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Abstract

The dispersion properties of torsional waves of a thick-walled transversely isotropic circular cylinder of infinite length

are investigated. The assumed waves are axisymmetric and propagate along the x-axis of the cylinder. The wall of the

cylinder consists of a transversely isotropic material with the axis of isotropy parallel to the x-axis of the cylinder. The

dispersion curves for both the phase and group velocities are determined and graphically illustrated. The amplitudes of the

tangential displacements for some dispersion branches are shown. The purpose of the paper is to show the present

technique is useful in solving some energy flow problems when torsional waves travel along arbitrarily laminated cylinders

with various kinds of anisotropy. It seems that by controlling the anisotropy of a shell-like structure, the optimisation of

amplitude and energy flow distributions in different parts of the structure can be achieved.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many scientists have dealt with propagation of elastic waves in isotropic and anisotropic hollow cylinders.
A classification of the possible free wave motions in a three-layered composite thick-walled cylinder has been
presented by Markuš and Mead [1]. Both the inner and outer layers were composed of transversely isotropic
material. The middle layer was made of an isotropic rubbery material. To obtain correct and closed form
solutions for the propagating waves, Bessel functions and special Frobenius series were adopted. Numerical
results have been given in the form of dispersion curves.

Kudlička [2] considered an arbitrarily laminated orthotropic cylindrical thick-walled pipe of infinite length in
order to obtain dispersion curves for an axisymmetric problem. A solution by means of finite exponential
expansions was found. The first five dispersion curves and relative amplitudes of axial and radial displacements
for axisymmetric elastic waves propagating along the x-axis of the boron–epoxy pipe were determined.

Kudlička [3] has also analysed an energy flow density problem, when axisymmetric elastic waves propagation
was allowed along the axis of a thick-walled three-layered (transtropic–isotropic–transtropic) shell. The results
for some wavenumbers and phase velocities belonging to the basic set of dispersion curves were compared with
those obtained for an isotropic epoxy cylinder with the same geometry as the anisotropic one.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Brepta and Prokopec [4] have described the problem of the propagation of rotary and axially symmetric
longitudinal, transverse (bending) and torsional waves in an isotropic cylindrical rod of infinite length. They
have used Pochhammer’s equation of motion in cylindrical coordinates introducing propagating wave-forms
for a given circular frequency.

The wall of the shell to be considered in this paper consists of a transversely isotropic GFRP (glass fibres,
resin polyester) layer, where the plane of symmetry is created by axial and tangential coordinates. The
dispersion curves for both the phase and group velocities are determined and graphically illustrated. The
amplitudes of the tangential displacements for some dispersion branches are also presented.
2. Dispersion and propagation of torsional waves

In the cylindrical coordinate system (Fig. 1), axial, tangential and radial coordinates are in the x; y; r
directions. For torsional waves, the displacements ux and ur are zero. The tangential displacements uy are not
dependent on the angle y, so @uy=@y ¼ 0. A harmonic torsional wave can be sought in the form:

uy ¼ V ðrÞ cos ½Kðx� ctÞ�, (1)

where V(r) is the wave function depending upon the r coordinate only, K ¼ 2p=l is the wavenumber, l is the
wavelength, c is the phase velocity of the wave, t is time.

The generalised Hooke’s law equations (the constitutive equations) are given in matrix form:

sx

sy
sr

ty r

tr x

tx y

2
6666666664

3
7777777775
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666666664

3
7777777775

ex
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, (2)
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Fig. 1. The geometry and coordinate system.
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where sx;sy;sr; ty r; tr x; tx y are the stresses, ex; ey; er; gy r; gr x; gx y the strains, and the elements Cij of the matrix
are the elastic moduli of the material of the cylinder. The strain–displacement relations are:

ex ¼
@ux

@x
¼ 0; ey ¼

1

r

@uy

@r
þ

ur

r
¼ 0; er ¼

@ur

@r
¼ 0,

gy r ¼
@uy

@r
�

uy

r
a0; gr x ¼

@ux

@r
þ
@ur

@x
¼ 0; gx y ¼

@uy

@x
a0. ð3Þ

The differential equations of wave motion for the displacements ux and ur are satisfied identically. The
displacement uy is governed by the equation:

@ty r

@r
þ
@tx y

@x
þ

2ty r

r
¼ r

@2uy

@t2
, (4)

where r is the density of the material.
Substituting Eqs. (1)–(3) into Eq. (4), one obtains for the function V(r):

d2V ðrÞ

dr2
þ

1

r

dV ðrÞ

dr
þ k0

2
�

1

r2

� �
V ðrÞ ¼ 0, (5)

where

k0
2
¼

rc2

C44
�

C66

C44

� �
K2. (6)

The general solution of Eq. (5) can be assumed in the form:

V ðrÞ ¼ C1J1ðk
0rÞ þ C2Y 1ðk

0rÞ, (7)

where functions J1ðk
0rÞ and Y 1ðk

0rÞ are Bessel functions of the first and second kind with argument k0r; C1

and C2 are constants. The solution of Eq. (5) must satisfy the boundary conditions on the inner and outer
surface of the cylinder. The conditions sr ¼ 0 and trx ¼ 0 are satisfied automatically in accordance with
Eqs. (2) and (3). From the condition ty r ¼ 0 one gets the relation to be fulfilled on the boundaries in the
following form:

r
@

@r

uy

r

� �
¼ 0, (8)

for r ¼ R1 and r ¼ R2, where R1 and R2 are the inner and outer radii, respectively.
After substituting Eqs. (1) and (7) into Eq. (8) and executing several rearrangements, we obtain

k0R1½J0ðk
0R1Þ þ CY 0ðk

0R1Þ� � 2½J1ðk
0R1Þ þ CY 1ðk

0R1Þ� ¼ 0;

k0R2½J0ðk
0R2Þ þ CY 0ðk

0R2Þ� � 2½J1ðk
0R2Þ þ CY 1ðk

0R2Þ� ¼ 0;
(9)

where C ¼ C2=C1. From Eq. (9), the constant C is given by

C ¼ �
k0R1J0ðk

0R1Þ � 2J1ðk
0R1Þ

k0R1Y 0ðk
0R1Þ � 2Y 1ðk

0R1Þ
. (10)

Introducing C into the second Eq. of (9) we finally get:

k0R2J0ðk
0R2Þ � 2J1ðk

0R2Þ �
k0R1J0ðk

0R1Þ � 2J1ðk
0R1Þ

k0R1Y 0ðk
0R1Þ � 2Y 1ðk

0R1Þ
� ½k0R2Y 0ðk

0R2Þ � 2Y 1ðk
0R2Þ� ¼ 0. (11)

The correct values of k0 are found by employing a root-finding procedure (using the software package
Mathematica [5]). In this way, it is possible to gain as many solutions as are desired with the required
accuracy.

If c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=r

p
is the velocity of a simple shear wave with an amplitude in the plane ðy; rÞ or ðr;xÞ, and

K 0 ¼
R1

l
; c0 ¼

c

c2
, (12)
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are the non-dimensional wavenumber and phase velocity of the torsional wave, then c0 is found as a function
of K 0 from Eq. (6):

c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0R1

2pK 0

� �2

þ
C66

C44

s
. (13)

For any solution k0, one dispersion branch is gained. For long waves K 0 ! 0 and then c0 ! 1. For very
short waves K 0 ! 1 and then c0 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66=C44

p
.

A group velocity cg satisfies the equation

cg ¼ c� l
dc

dl
. (14)

Let us denote c0g ¼ cg=c2 which denotes the non-dimensional group velocity. Using Eqs. (12) and (14), we
obtain

c0g ¼ c0 �
1

c0
k0R1

2pK 0

� �2

. (15)

To obtain the exact expression for the function V(r), we must first use Eq. (7) to get the constants C1 and C2.
Let the function V(r) be normalised in relation to the radius R1 such that:

V ðR1Þ ¼ C1J1ðk
0R1Þ þ C2Y 1ðk

0R1Þ ¼ 1. (16)

Since C ¼ C2=C1 we get

C1 ¼
1

J1ðk
0R1Þ þ CY 1ðk

0R1Þ
: (17)

Following the above procedure, the normalised functions of V(r) can be determined from Eq. (7) for
arbitrary k0 as a function of r.

3. Numerical results

The following data were used for the computational analysis: Ratio of outer radius to the inner radius of the
shell was R2=R1 ¼ 2. The mechanical properties of the chosen GFRP composite were: in-plane Young’s
moduli Ex ¼ Ey ¼ 15:65GPa, transverse Young’s modulus Er ¼ 7:7GPa, shear modulus Grx ¼ 5:0GPa,
Poisson ratios nxy ¼ 0:310, nrx ¼ 0:315, nyr ¼ 0:215, density r ¼ 1576 kgm�3.

The mechanical properties for the transversely isotropic GFRP cylinder yield the following elastic matrix:

C ¼

21 9 7 0 0 0

9 21 7 0 0 0

7 7 10 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 6

2
666666664

3
777777775
GPa:

The first three solutions of Eq. (11) for the parameter k0 are 3.407, 6.428 and 9.523. Using Eq. (13) the
phase velocity c0 was computed for different wavenumbers K 0 within the interval 0; 3ið . The three lowest
dispersion curves are shown in Fig. 2. The non-dimensional velocities are plotted with thin unbroken lines and
represent simple shear waves with amplitudes of motion in the plane of ðy; rÞ or ðr;xÞ given by
c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66=C44

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6GPa=5GPa

p
¼ 1:2. The dependence of phase velocities c0 upon parameter k0 and

wavenumbers K 0 are clearly illustrated. The same features for group velocities c0g (three increasing dotted
curves) are worth noticing.

Normalised values of the tangential displacements V ðrÞ for the first three wave-forms are shown in
Fig. 3. The solid, dashed and dash–dotted lines show the amplitudes of tangential displacements for
the iterated values of k0. The integration constants C1 and C2 for corresponding k0, calculated from Eq. (17),
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Fig. 3. Normalised amplitudes of tangential displacements for torsional waves. Solid line: k0 ¼ 3:407; dashed line: k0 ¼ 6:428; dash–dotted
line: k0 ¼ 9:523.

Table 1

Constants of Eq. (7)

1 2 3 4 5

N k0 c0 C1 C2

1 3.407 1.222 �0.048 2.510

2 6.428 1.499 �1.116 �3.054

3 9.523 1.870 1.842 3.447
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Fig. 2. First three dispersion curves for phase and group velocities. Solid lines (from bottom up): Phase velocities for k0 ¼ 3:407, 6.428,
9.523. Dotted lines (from top down): Group velocities for the same k0. Thin line: The velocity of a transverse wave.
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are presented in Table 1. As can be seen in Fig. 3, vibration nodes ½V ðrÞ ¼ 0� are found at the following
radii: 1.60 (first branch), 1.27 and 1.77 (second branch), 1.17, 1.52 and 1.85 (third branch) of the dispersion
curve.
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4. Conclusions

Some important conclusions can be drawn from the study:
1.
 The analysis has shown under what conditions pure torsional waves can propagate in a thick shell-like
structure with defined transverse isotropy. Typical dispersion effects take place similar to those in a cylinder
made from isotropic material.
2.
 The dispersion of torsional waves is strongly dependent on shear elastic constants, i.e. C66/C44 (see
Eq. (13)). For very large values of wavenumbers ðK 0Þ, phase velocities reach asymptotic values, approaching
the value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66=C44

p
: This feature suggests the possibility of tailoring structures when energy flow or

vibration control problems are involved.

3.
 Further, we conclude that the phase velocity of long waves increases indefinitely as the long wave values of

K 0 approach zero. On the other hand, the group velocity always remains finite, approaching zero as K 0 ! 0
and approaching an asymptotic value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C66=C44

p
as K 0 ! 1.
4.
 Finally the study has proved that for a wide range of engineering materials such as reinforced composites,
wood, molybdenum, barites, etc. (all of which possess special planes of elastic symmetry) a powerful
computational procedure exists for analysis of their dynamical processes.
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